Improvement of organic sweet cherry production in Austria

Spornberger Andreas, Ostojic Slaven, Telfser Josef, Keppel Herbert, Böck Klemens, Leder Leopold, Modl Peter

Division of Viticulture and Pomology
University of Natural Resources and Life Sciences, Vienna, Austria
Introduction – research questions

- Is organic cherry production in Austria practicable?
 - Control of pests (cherry fruit fly, aphids, …) and diseases (leaf diseases, Monilia fruit rot, …)
 - Which cultivars are suitable?
 - Fruit quality?
Cultivar trial

- Research orchard of BOKU, organically managed
- 12 mainly early mature cv. with 8 replications
- planted in autumn 2003
- rootstock Gisela5®
- 2,5m x 4m
- spindle
Ranking of cultivars

- Bigarreau Burlat (Schreiber)
- Merchant
- Bigarreau Moreau
- Hybrid 222
- Merton Premier
- Burlat (VG)
- Early Lory
- Schachl
- Valeska
- Marzer Kirsche
- Langstielige
- Sweetheart
Organic production with later ripening cultivars?
Cherry aphid (Myzus prunium, M. cerasi)
Why fruit thinning?

- Enhancing fruit quality (fruit size, . . .)
- Less Monilia (flower and fruit rot)
- . . .
Mechanical thinning of flowers (2010 - 2012)

Electroflor (Effleureuse)
Fruit thinning with Effleureuse
during full blossom (BBCH 65)
~ 40% of the flowers removed
Results: Attack with Monilinia laxa on flowers (2 weeks after full blossom, May 2010)

% infested flowers

Monilinia laxa (may 2010)

* = ANOVA (GLM), different letters show significance (P<0.05)
Trial with flower treatments (2010)

mechanical variants:
• Electroflor (April 11th)
• Removing of young cherries with scissors = hand thinning (6th May)

spraying variants (April 11th, April 16th):
• wettable sulphur (4%)
• lime sulphur (3%)
• IP- standard ATS (1.8%)
Research orchard B (2010)
Results

Fruit setting, yield and flower infestation with *M. laxa* in 2010 in orchard B (mean ‘Blaze Star’ and ‘Merchant’)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Hand thinning (fruits)</th>
<th>Electro-flor</th>
<th>ATS</th>
<th>Sulphur</th>
<th>Lime sulphur</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvested Fruits (total)</td>
<td>35 ± 15,9</td>
<td>27 ± 9,4</td>
<td>19 ± 8,3</td>
<td>29 ± 11,0</td>
<td>45 ± 16,8</td>
<td>32 ± 12,3</td>
<td>0,000<sup>†</sup></td>
</tr>
<tr>
<td>[Fruits from 100 flowers]</td>
<td>c</td>
<td>abc</td>
<td>a</td>
<td>bc</td>
<td>d</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Fruit setting (total) [% of control]</td>
<td>100,0</td>
<td>76,0</td>
<td>53,1</td>
<td>82,4</td>
<td>128,0</td>
<td>89,3</td>
<td></td>
</tr>
<tr>
<td>Marketable fruits</td>
<td>27 ± 14,4</td>
<td>20 ± 10,2</td>
<td>13 ± 7,7</td>
<td>23 ± 12,9</td>
<td>37 ± 16,6</td>
<td>22 ± 11,8</td>
<td>0,000<sup>†</sup></td>
</tr>
<tr>
<td>[Fruits from 100 flowers]</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Not marketable fruits</td>
<td>8 ± 5,4</td>
<td>7 ± 4,0</td>
<td>6 ± 4,4</td>
<td>6 ± 5,4</td>
<td>9 ± 5,9</td>
<td>10 ± 7,9</td>
<td>0,075<sup>†</sup></td>
</tr>
<tr>
<td>[Fruits from 100 flowers]</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Marketable yield [g/branch, 100 flowers]</td>
<td>144 ± 63</td>
<td>126 ± 57</td>
<td>88 ± 50</td>
<td>134 ± 57</td>
<td>176 ± 62</td>
<td>139 ± 69</td>
<td>0,000<sup>†</sup></td>
</tr>
<tr>
<td>[Fruits from 100 flowers]</td>
<td>bc</td>
<td>b</td>
<td>a</td>
<td>bc</td>
<td>c</td>
<td>bc</td>
<td></td>
</tr>
<tr>
<td>Marketable yield [% of control]</td>
<td>100,0</td>
<td>87,5</td>
<td>61,1</td>
<td>93,1</td>
<td>122,2</td>
<td>96,5</td>
<td></td>
</tr>
<tr>
<td>Ø Fruit weight [g/fruit]</td>
<td>5,6 ± 0,9</td>
<td>6,6 ± 1,4</td>
<td>6,8 ± 2,0</td>
<td>6,4 ± 1,5</td>
<td>5,3 ± 1,4</td>
<td>6,7 ± 1,6</td>
<td>0,000<sup>†</sup></td>
</tr>
<tr>
<td>Ø Fruit weight [% of control]</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Monilinia laxa [% infested flowers on 29th April]</td>
<td>16,9 ± 8,8</td>
<td>13,3 ± 8,2</td>
<td>9,8 ± 3,6</td>
<td>8,9 ± 3,7</td>
<td>3,0 ± 1,8</td>
<td>2,5 ± 1,0</td>
<td>0,000<sup>†</sup></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>b</td>
<td>ab</td>
<td>ab</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

p-value from Anova
Conclusions (cultivars)

- Organic production of cherries practicable with low input with suitable early mature cultivars; recommendable:
 - Bigarreau Burlat
 - Merchant
 - Bigarreau Moreau
Conclusions (thinning)

- Electroflor, manual thinning of young fruits, lime sulphur > thinning effect + fruit size
- Larger fruit size could only partly replace yield losses due to thinning
- No influence on fruit diseases and internal fruit quality
- Electroflor more suitable for farmers than manual thinning
- Sulphur and lime sulphur reduced flower infestations with *M. laxa*
Thank you for your attention!

andreas.spornberger@boku.ac.at

Division of Viticulture and Pomology
Department of Crop Sciences
University of Natural Resources and Life Sciences
A-1180, Vienna
Austria